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Abstract

Evolutionary algorithms have been success-
fully applied to a variety of molecular struc-
ture prediction problems. In this paper we re-
consider the design of genetic algorithms that
have been applied to a simple protein struc-
ture prediction problem. Our analysis con-
siders the impact of several algorithmic fac-
tors for this problem: the conformational rep-
resentation, the energy formulation and the
way in which infeasible conformations are pe-
nalized. Further we empirically evaluate the
impact of these factors on a small set of poly-
mer sequences. Our analysis leads to spe-
cific recommendations for both GAs as well
as other heuristic methods for solving PSP
on the HP model.

1 INTRODUCTION

A protein is a chain of amino acid residues that folds
into a specific native tertiary structure under certain
physiological conditions. A protein’s structure deter-
mines its biological function. Consequently, methods
for solving protein structure prediction (PSP) prob-
lems are valuable tools for modern molecular biology.
Exhaustive search of a protein’s conformational space
is not a feasible algorithmic strategy for PSP even for
small protein sequences. Furthermore, recent compu-
tational analyses of PSP have shown that this problem
is intractable on simple lattice models [1, 3]. Conse-
quently, heuristic optimization methods seem the most
reasonable algorithmic choice to solve PSP problems.
In particular, evolutionary methods have been used by
a variety of researchers [14, 13, 10, 7, 8, 11, 12].

In this article we examine the basic design principles
that have guided prior work with GAs on the PSP
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problem for the HP model [4]. We focus on a simple
lattice model because lattice models can capture many
global aspects of protein structures, they are inexpen-
sive to use, and it is possible to design test problems for
which the best conformational structure is known (for
small protein sequences). The PSP problem for the
HP model is a good test problem for evaluating GAs
because its complexity is well understood and there
has been a lot of prior work developing heuristics and
global optimization methods for this problem.

We consider three basic algorithmic factors that affect
how GAs are applied to this PSP problem. First, we
evaluate the representations commonly used for this
problem and describe equivalences between different
operators across these search domains. Next, we pro-
pose a new method for formulating the energy poten-
tial for the HP model that makes the energy potential
more continuous while preserving the integer rank or-
der of conformations in the search domain. Finally, we
describe how penalty methods can be used to safely
enforce self-avoiding constraints.

2 THE HP PROTEIN FOLDING
MODEL

One of the most studied simple protein models is the
hydrophobic-hydrophilic model (HP model) proposed
by Dill [4]. HP models abstract the hydrophobic inter-
action process in protein folding by reducing a protein
to a heteropolymer that represents a predetermined
pattern of hydrophobicity in the protein; nonpolar
amino acids are classified as hydrophobic and polar
amino acids are classified as hydrophilic. A sequence is
s € {H, P}*, where H represents a hydrophobic amino
acid and P represents a hydrophilic amino acids.

The HP model restricts the space of conformations to
self-avoiding paths on a lattice in which vertices are
labeled by the amino acids. The energy potential in
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the HP model reflects the fact that hydrophobic amino
acids have a propensity to form a hydrophobic core.
To capture this feature of protein structures, the HP
model adds a value € for every pair of hydrophobics
that form a topological contact; a topological contact
is formed by a pair of amino acids that are adjacent on
the lattice and not consecutive in the sequence. The
value of € is typically taken to be —1. Figure 1 shows
sequences embedded in the square and the triangular,
with hydrophobic-hydrophobic contacts (HH contacts)
highlighted with dotted lines. The conformation in
Figure 1a has an energy of -4 and the conformation in
Figure 1b has an energy of -6.

(a) (b)

Figure 1: HP sequences embedded in (a) the square lattice
and (b) the triangular lattice.

3 PSP METHODS FOR THE HP
MODEL

Despite the simplicity of the HP model, it is powerful
enough to capture a variety of properties of actual pro-
teins [5]. The PSP problem for the HP model has been
shown to be NP-complete on the square lattice [3] and
cubic lattice [1], and performance guaranteed approx-
imation algorithms have been developed for a variety
of lattice models (e.g. see Hart and Istrail [6]).

A wide variety of global optimization techniques have
been applied to PSP (e.g. see the papers in Biegler
et al. [2] and Pardalos, Shalloway and Xue [9]). In
particular, GAs have proven a particularly robust and
effective global optimization technique for PSP. For
these methods, the embedding of a sequence in a lat-
tice may be represented in a number of ways. Three
common methods are Cartesian coordinates (the loca-
tion of each acid on the lattice is specified indepen-
dently), internal coordinates (the protein is specified
as a sequence of moves taken on the lattice from one
acid to the next), and as a distance matrix (amino
acid locations are inferred from inter-amino acid dis-
tances).

An early application of GAs to PSP was that of Unger
and Moult [14, 13]. Their GA uses internal coordinates
that specify an absolute direction on a square or cubic
lattice. Thus individuals are coded with a sequence in

{U,D,L,R,F,B}"" (which correspond to up, down,
left, right, forward and backward moves in a cubic
for a length n protein). Additionally, their GA only
considers feasible conformations that are self-avoiding
paths on the lattice. When mutation and crossover are
applied, their GA iterates until a feasible conformation
is generated.

Patton et al. [10] describe a standard GA that sig-
nificantly outperforms the GA used by Unger and
Moult [13].  They also employed an internal coor-
dinate representation that uses relative offsets from
the current position, together with a a chain-growth
method to help the GA search through feasible confor-
mations. A standard form of relative offsets represents
a conformation as a sequence in {F, L, R,U, D}" 2. In
this case the direction is interpreted relative to the di-
rection of the previous move, rather than relative to
the axes defined by the lattice. This has the advan-
tage of guaranteeing that all solutions are 1-step self
avoiding (since there is no “back” move ). The authors
use a penalty method to enforce the self-avoiding con-
straints. Their objective function adds a penalty if two
or more amino acids lie at the same position on the lat-
tice. Further, any hydrophobic amino acid which lies
at the same position as another amino acid does not
add hydrophobic-hydrophobic contacts to the poten-
tial energy.

Khimasia and Coveney [7] considered the performance
of Goldberg’s Simple Genetic Algorithm (SGA) using
internal coordinates with absolute moves. The objec-
tive function was defined as a hybrid between the Ran-
dom Energy Model and the HP model. This included
two penalty terms: a penalty for each lattice site that
has two amino acids on it, and a penalty for each lat-
tice site that has three or more monomers on it.

Krasnogor et al. [8] empirically evaluate what mix of
evolutionary operators (mutations, macromutations,
crossover) were most useful for solving the PSP prob-
lem for the HP model. Their experiments evaluated
GAs that applied these operators with different combi-
nations of probabilities. Their results strongly suggest
that (1) one point crossover was not able to trans-
fer building blocks and (2) macromutation was act-
ing like powerful local search. For the instances stud-
ied, the best combination of parameters had a small
crossover probability and high mutation and macro-
mutation probabilities.

4 ALGORITHMIC DESIGN

In this section we critique three algorithmic factors
that impact the performance and general applicability
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of GAs for PSP problems: the energy potential, the
method of constraint management, and the conforma-
tional representation.

4.1 ENCODINGS FOR INTERNAL
COORDINATES

When working with lattice models, proteins are of-
ten represented using internal coordinates. However
no comparative studies have evaluated whether an ab-
solute (as per Unger above) or relative (as per Pat-
ton et al. ) representation is more effective for GAs;
prior researchers selected an encoding without explicit
numerical comparisons [10, 13, 8]. Since other algo-
rithmic parameters were also chosen differently, it is
difficult to assess the impact that the choice of encod-
ing has on a GA’s performance. In this section we
illustrate how the fitness landscapes induced by these
encodings and the standard genetic operators can have
important differences that may affect the global search
behavior of the GA. Our discussion considers the two
dimensional square lattice, but an extension to other
discrete lattices is straightforward.

Mutation on the Relative Encoding Consider
the effect of one-point mutation on the structure
in Figure 2(a). It’s relative encoding is S, =
FLLFRRLRLLR when viewed from the H amino
acid. A one point mutation in the sixth position
could produce either of S}, = FLLFRFLRLLR or
S2, = FLLFRLLRLLR, which are shown in Fig-

ures 2(b) and 2(c) respectively.

(a) (b) (c)

Figure 2: In (b) a one point mutation of the structure
in (a) at the sixth gene. An ‘R’ was mutated to an ‘F’
producing a lever effect of 90 degrees counterclockwise. In
(¢) an ‘R’ was mutated to an ‘L’ producing a lever effect
of 180 degrees counterclockwise

We can see from this example that a one point mu-
tation in the relative encoding produces a rotation ef-
fect in the structure at the mutated point. To pro-
duce the same effect in the absolute encoding we must
perform a macromutation, that is, several genes need
to be simultaneously mutated to produce the same
change in the structure. We define a rotation oper-
ator in the absolute encoding as, given a point where
to produce the rotation, all the remaining genes will

be changed according to a mapping that depends on
the angle to be rotated'. In the working example,
Figure 2(a) is encoded as S,;s = RULLURURULU
while the first mutated structure (Figure 2(b)) is
Sl = RULLUULULDL and Figure 2(c) is S%,, =

abs abs

RULLULDLDRD.

Mutation on the Absolute Encoding A One-
point mutation in an absolute encoding leaves the ori-
entation of the rest of the structure unchanged. To
achieve the same effect in the relative encoding, it is
necessary to change two subsequent values in the en-
coding. There are, however, restrictions in the map-
ping from a one-point mutation under the absolute
encoding to a two-point mutation in the relative en-
coding. Specifically, point mutations in an absolute
encoding can produce structures that are not one-step
self-avoiding, which have no equivalent in a relative
encoding.

4.2 POTENTIAL ENERGY
FORMULATION

Figure 3 illustrates two conformations of a hydropho-
bic sequence that are formed from two domains con-
nected by a hydrophilic chain. Since the HP model
only rewards direct hydrophobic-hydrophobic con-
tacts, only the compact subconformations contribute
energy to these conformations. However, it is clear
that Figure 3a is closer to forming the optimal confor-
mation than Figure 3b.

(a) (b)

Figure 3: Two conformations with equal energy for the
HP model. Figure (a) has lower energy for the modified
HP model.

This type of disparity between the energy value and
the “closeness” of the conformation can be remedied
by augmenting the energy function to allow a distance-
dependent hydrophobic-hydrophobic potential. Since
the distances between amino acids form a countable
set, it is possible to construct a distance-dependent
potential that preserves the rank order of the confor-
mations in the HP model while enabling a finer level
of distinction between conformations with the same
number of hydrophobic-hydrophobic contacts. For ex-
ample, if d;; is the distance between two hydrophobic

Tee. to rotate 90 degrees clockwise U ~ R, D
L, R— D, L —U
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amino acids H; and Hj, then we can use

. -1 dii =1
BEu,u, (dij) = Y » (
i w; (dij) { _1/(dijH) ydig > 1 (1)

where Ny equals the number of hydrophobics in the
polymer sequence, and where k& = 4 for the square
lattice and k = 5 for the triangular and cubic lattices.

4.3 CONSTRAINT MANAGEMENT

Two broad classes of constraints need to be enforced
to define a feasible conformation: (1) the connectiv-
ity of the polymer chain and (2) the self-avoidance of
the conformation. Perhaps the strongest motivation
for using internal coordinates is that they handle the
first constraint implicitly, whereas this must be done
explicitly if Cartesian coordinates are used.

Two basic approaches have been taken to manage
self-avoiding constraints when internal coordinates are
used. First, the search is constrained to only consider
feasible, self-avoiding conformations. This method is
not well suited to PSP problems, though, because the
shortest path from one compact feasible conformation
to another may be very long when compared with the
shortest path through the space of infeasible confor-
mations. For example, in Figure 4 the HP sequence
can move from conformation (a) to conformation (b)
through three single-point changes. These changes
generate infeasible conformations, but the sequence of
feasible conformations which perform this move would
clearly be much larger than this.

The second approach to enforcing constraints uses
penalties to guide the GA toward feasible solutions.
Two penalty methods have been used to solve PSP for
the HP model. First, a penalty is added for every pair
of amino acids that lie at the same lattice point. Using
this method, there may be O(n?) penalties. Second, a
penalty is added for every lattice point at which there
are two or more amino acids. Using this, there may be
O(n) penalties. Patton et al. [10] extend this further
to prevent hydrophobic amino acids from contributing
to the objective function if they lie on a lattice point
with other amino acids.

(a) (b)

Figure 4: Two compact conformations which are
“close” if infeasible moves are allowed.

When evaluating these penalty methods, it is impor-
tant to consider whether they correctly bias the search
strategy to feasible regions. The GAs discussed in Sec-
tion 3 that use a penalty method apply a fixed constant
penalty term C per violation. This policy can cause
problems if the second penalty method is applied with-
out the extension of Patton et al. . For fixed values of
C'is possible to construct examples where the structure
with optimal energy with the penalty method does not
correspond to the optimal energy for the HP model. It
is also important to consider the efficacy of the penalty
method to understand how well they facilitate opti-
mization. For example, we believe that the extended
formulation proposed by Patton et al. may lead to a
less effective search than other methods. When the hy-
drophobic amino acids are prevented from contribut-
ing to the objective function because they overlap, the
fitness landscape may have large flat regions, which
can make the optimization problem more difficult.

These considerations recommend the use of a fixed
penalty approach that is adapted based on the num-
ber of hydrophobics available in the protein sequence,
Np. The idea is that we can select C' sufficiently
large to ensure the validity of the fixed-penalty con-
straint formulation. For example, on the square lat-
tice if C' = 2Ny + 2 then the penalty is large enough
that any infeasible conformation has positive energy
while all feasible conformations have nonpositive en-
ergy. Thus the optimal conformation of the HP model
is strictly better than the best penalized conformation.

5 METHODS AND RESULTS

The GAs used in our experiments had a (500 + 500)
selection strategy, and mutation was applied to each
structure with probability 0.3. One-Point mutation
was used to change one value in an absolute encod-
ing, and two-point mutation was used to change two
consecutive values in a relative encoding. One-Point,
Two-Point and Uniform crossover operators were used
with probability of 0.8. Each run of the GA consisted
of 200 generations. For the comparison of the en-
codings the proposed modified energy potential was
used. Furthermore, every pair of amino acids mapped
to the same lattice position was penalized with a con-
stant penalty, C, dependent on the length of the in-
stance. We used five polymer sequences in our experi-
ments, which have a relatively short length (less than
50 monomers). The instances used can be found at
ttp://www.ics.uwe.ac.uk/staff/Natk.tml.

RELATIVE VS. ABSOLUTE ENCODING In
order to evaluate the effect of the encoding on the
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ability of the GA to find low energy configurations,
a series of experiments were run using the GA to find
optimal configurations for a number of proteins under
the two encodings. The performance metric was the
fitness of the best individual in the final generation
of each run. In order to distinguish the effects of the
encodings from that of the choice of lattice or opera-
tors, experiments were run in three different embed-
ding spaces: two dimensional square and triangular
lattices and a three dimensional square lattice. Five
protein instances of differing length and difficulty were
chosen for each lattice. In each type of lattice separate
experiments were run using One-Point, Two-point and
Uniform Crossover. As described above the mutation
operators used have the same phenotypic effect in each
encoding. Twenty nine runs were done for each of the
45 combinations.

Figure 5 summarizes the result of this experiment. For
each combination of lattice, crossover operator, and
protein sequence, we computed the rank over all trials
of the two experiments that use either an absolute or
relative encoding of protein conformations. A maxi-
mum rank of 58 is possible since there are 29 trials
in each of the experiments in each pair. This figure
shows boxplots of the relative ranks of the final results
for each lattice and for the encodings; maximizing the
ranks indicates a better method. This plot clearly in-
dicates that the relative encoding is at least as good in
all lattices, and for the square lattice it is much better.

50

T

Rank Within Test Case
30

=

sq2d sq2d sq3d sq3d tizd trizd
Abs Rel Abs Rel Abs Rel

Figure 5: Distribution of relative ranks for relative and
absolute encodings on the square, cubic and triangular lat-
tices.

In Table 5 the results of computing the p — values
of a t — test are shown, the null hypothesis used was
that the mean fitness of both encodings are the same.
From this table we can say that: (1) the relative was
almost always better than the absolute encoding for
the square and cubic lattices ( at the 95% confidence
level ) and (2) the robustness of the relative encoding
degrades when we look to the triangular lattice (we
suspect this might have important consequences in off-
lattice modeling).

Lat | Cro A B C D E
S2D | I-p | R+ | R+ | R+ | R+ | R+
2p | R+ | R+ | R+ | R+ | R+
Uni | R+ | R+ | R+ | R+ | R+
S3D | 1-p | R+ R - | R+ | R+
2-p R| R+ | R+ | R+ | R+
Uni | R+ | R+ | R+ R | R+
T2D | 1-p - R|A+t| A A+
2-p - - - - | A+
Uni | R+ | R+ | R+ | A+ | A+

Table 1: Summary of t-test analysis: - denotes no signifi-
cant difference, X denotes Encoding X was better with 90%
confidence, X+ denotes 95% confidence, X= R (relative)
or A (absolute)

STANDARD VS. DISTANCE ENERGY In
this set of experiments we wanted to elucidate if the
modified energy potential improves the search capabil-
ities of the GA. For each of the three lattices we used
the same first four instances as for the previous section.
From the three crossover available we run the simula-
tions for One-point and Two-point crossover. Again,
29 trials were assigned to each of the four instances
in each of the three lattices for each crossover tested.
The results of these experiments do not show a sub-
stantial impact of using the modified energy potential
for the test problems. We computed the p — values of
a t — test where the null hypothesis was that the fi-
nal protein configuration were the same using the two
energy potential. We found that the two energy poten-
tials had the same performance except for instance B
using two-point crossover on the triangular lattice (p
= 0.95). There also appeared to be a slight effect for
instances C and D on the triangular and cubic lattices,
but this was not a significant difference.

6 DISCUSSION

In this paper we have directly compared the encoding
of PSP using internal coordinates by means of relative
and absolute moves. We have shown the search spaces
induced by the relative and absolute encodings to be
different and described a mapping of the One-point
mutation in the absolute to the relative encoding (the
same can be done for other genetic operators). Also,
we proposed a modified energy potential that facil-
itates the GA search while preserving the ranking of
the standard HP model. We also identified weaknesses
in the standard constraint management strategies and
proposed a constraint method that ensures the feasi-
bility of the optimal solution. These algorithmic issues
were explored in the three most common lattices be-
ing used: two and three dimensional square lattice and

www.manaraa.com



two dimensional triangular lattices. Our results sup-
port the use of the relative encoding for this problem,
which may explain the superior performance of the GA
described by Patton et al. [10] as compared to the GA
described by Unger.

It was previously argued [11, 7, 8] that the representa-
tion with internal coordinates and standard crossovers
fail to transfer building blocks. In the works stud-
ied there were no direct comparisons of the relative
and absolute encodings. If alternative representations
based on internal coordinates are to be researched or
used in heuristics (i.e. G.R.A.S.P., Hill Climbers, etc.),
then our results supports the use of the relative en-
coding over the absolute one. Although the modified
energy potential did not provide improved optimiza-
tion performance in our experiments, we suspect that
for longer proteins the difference between the two for-
mulations will be more clear. Furthermore, we believe
that a modified energy formulation will be particularly
important for the effective use of hybrid GAs that use
a local search method. Without a modified energy po-
tential, there will exist large “plateaus” in the energy
landscape on which local search cannot find a descent
direction and where it must effectively perform a ran-
dom search.
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