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David A. PeltaDept de Cienciasde la Computacion eInteligencia Arti�cialUniversidad de Granada17801 Granada, Espa~nadpelta@platon.ugr.esAbstractEvolutionary algorithms have been success-fully applied to a variety of molecular struc-ture prediction problems. In this paper we re-consider the design of genetic algorithms thathave been applied to a simple protein struc-ture prediction problem. Our analysis con-siders the impact of several algorithmic fac-tors for this problem: the conformational rep-resentation, the energy formulation and theway in which infeasible conformations are pe-nalized. Further we empirically evaluate theimpact of these factors on a small set of poly-mer sequences. Our analysis leads to spe-ci�c recommendations for both GAs as wellas other heuristic methods for solving PSPon the HP model.1 INTRODUCTIONA protein is a chain of amino acid residues that foldsinto a speci�c native tertiary structure under certainphysiological conditions. A protein's structure deter-mines its biological function. Consequently, methodsfor solving protein structure prediction (PSP) prob-lems are valuable tools for modern molecular biology.Exhaustive search of a protein's conformational spaceis not a feasible algorithmic strategy for PSP even forsmall protein sequences. Furthermore, recent compu-tational analyses of PSP have shown that this problemis intractable on simple lattice models [1, 3]. Conse-quently, heuristic optimization methods seem the mostreasonable algorithmic choice to solve PSP problems.In particular, evolutionary methods have been used bya variety of researchers [14, 13, 10, 7, 8, 11, 12].In this article we examine the basic design principlesthat have guided prior work with GAs on the PSP

problem for the HP model [4]. We focus on a simplelattice model because lattice models can capture manyglobal aspects of protein structures, they are inexpen-sive to use, and it is possible to design test problems forwhich the best conformational structure is known (forsmall protein sequences). The PSP problem for theHP model is a good test problem for evaluating GAsbecause its complexity is well understood and therehas been a lot of prior work developing heuristics andglobal optimization methods for this problem.We consider three basic algorithmic factors that a�ecthow GAs are applied to this PSP problem. First, weevaluate the representations commonly used for thisproblem and describe equivalences between di�erentoperators across these search domains. Next, we pro-pose a new method for formulating the energy poten-tial for the HP model that makes the energy potentialmore continuous while preserving the integer rank or-der of conformations in the search domain. Finally, wedescribe how penalty methods can be used to safelyenforce self-avoiding constraints.2 THE HP PROTEIN FOLDINGMODELOne of the most studied simple protein models is thehydrophobic-hydrophilic model (HP model) proposedby Dill [4]. HP models abstract the hydrophobic inter-action process in protein folding by reducing a proteinto a heteropolymer that represents a predeterminedpattern of hydrophobicity in the protein; nonpolaramino acids are classi�ed as hydrophobic and polaramino acids are classi�ed as hydrophilic. A sequence iss 2 fH;Pg+, whereH represents a hydrophobic aminoacid and P represents a hydrophilic amino acids.The HP model restricts the space of conformations toself-avoiding paths on a lattice in which vertices arelabeled by the amino acids. The energy potential in
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the HP model re
ects the fact that hydrophobic aminoacids have a propensity to form a hydrophobic core.To capture this feature of protein structures, the HPmodel adds a value � for every pair of hydrophobicsthat form a topological contact; a topological contactis formed by a pair of amino acids that are adjacent onthe lattice and not consecutive in the sequence. Thevalue of � is typically taken to be �1. Figure 1 showssequences embedded in the square and the triangular,with hydrophobic-hydrophobic contacts (HH contacts)highlighted with dotted lines. The conformation inFigure 1a has an energy of -4 and the conformation inFigure 1b has an energy of -6.
(a) (b)Figure 1: HP sequences embedded in (a) the square latticeand (b) the triangular lattice.3 PSP METHODS FOR THE HPMODELDespite the simplicity of the HP model, it is powerfulenough to capture a variety of properties of actual pro-teins [5]. The PSP problem for the HP model has beenshown to be NP-complete on the square lattice [3] andcubic lattice [1], and performance guaranteed approx-imation algorithms have been developed for a varietyof lattice models (e.g. see Hart and Istrail [6]).A wide variety of global optimization techniques havebeen applied to PSP (e.g. see the papers in Biegleret al. [2] and Pardalos, Shalloway and Xue [9]). Inparticular, GAs have proven a particularly robust ande�ective global optimization technique for PSP. Forthese methods, the embedding of a sequence in a lat-tice may be represented in a number of ways. Threecommon methods are Cartesian coordinates (the loca-tion of each acid on the lattice is speci�ed indepen-dently), internal coordinates (the protein is speci�edas a sequence of moves taken on the lattice from oneacid to the next), and as a distance matrix (aminoacid locations are inferred from inter-amino acid dis-tances).An early application of GAs to PSP was that of Ungerand Moult [14, 13]. Their GA uses internal coordinatesthat specify an absolute direction on a square or cubiclattice. Thus individuals are coded with a sequence in

fU;D;L;R; F;Bgn�1 (which correspond to up, down,left, right, forward and backward moves in a cubicfor a length n protein). Additionally, their GA onlyconsiders feasible conformations that are self-avoidingpaths on the lattice. When mutation and crossover areapplied, their GA iterates until a feasible conformationis generated.Patton et al. [10] describe a standard GA that sig-ni�cantly outperforms the GA used by Unger andMoult [13]. They also employed an internal coor-dinate representation that uses relative o�sets fromthe current position, together with a a chain-growthmethod to help the GA search through feasible confor-mations. A standard form of relative o�sets representsa conformation as a sequence in fF;L;R; U;Dgn�2. Inthis case the direction is interpreted relative to the di-rection of the previous move, rather than relative tothe axes de�ned by the lattice. This has the advan-tage of guaranteeing that all solutions are 1-step self{avoiding (since there is no \back" move ). The authorsuse a penalty method to enforce the self-avoiding con-straints. Their objective function adds a penalty if twoor more amino acids lie at the same position on the lat-tice. Further, any hydrophobic amino acid which liesat the same position as another amino acid does notadd hydrophobic-hydrophobic contacts to the poten-tial energy.Khimasia and Coveney [7] considered the performanceof Goldberg's Simple Genetic Algorithm (SGA) usinginternal coordinates with absolute moves. The objec-tive function was de�ned as a hybrid between the Ran-dom Energy Model and the HP model. This includedtwo penalty terms: a penalty for each lattice site thathas two amino acids on it, and a penalty for each lat-tice site that has three or more monomers on it.Krasnogor et al. [8] empirically evaluate what mix ofevolutionary operators (mutations, macromutations,crossover) were most useful for solving the PSP prob-lem for the HP model. Their experiments evaluatedGAs that applied these operators with di�erent combi-nations of probabilities. Their results strongly suggestthat (1) one point crossover was not able to trans-fer building blocks and (2) macromutation was act-ing like powerful local search. For the instances stud-ied, the best combination of parameters had a smallcrossover probability and high mutation and macro-mutation probabilities.4 ALGORITHMIC DESIGNIn this section we critique three algorithmic factorsthat impact the performance and general applicability
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of GAs for PSP problems: the energy potential, themethod of constraint management, and the conforma-tional representation.4.1 ENCODINGS FOR INTERNALCOORDINATESWhen working with lattice models, proteins are of-ten represented using internal coordinates. Howeverno comparative studies have evaluated whether an ab-solute (as per Unger above) or relative (as per Pat-ton et al. ) representation is more e�ective for GAs;prior researchers selected an encoding without explicitnumerical comparisons [10, 13, 8]. Since other algo-rithmic parameters were also chosen di�erently, it isdi�cult to assess the impact that the choice of encod-ing has on a GA's performance. In this section weillustrate how the �tness landscapes induced by theseencodings and the standard genetic operators can haveimportant di�erences that may a�ect the global searchbehavior of the GA. Our discussion considers the twodimensional square lattice, but an extension to otherdiscrete lattices is straightforward.Mutation on the Relative Encoding Considerthe e�ect of one-point mutation on the structurein Figure 2(a). It's relative encoding is Srel =FLLFRRLRLLR when viewed from the H aminoacid. A one point mutation in the sixth positioncould produce either of S1rel = FLLFRFLRLLR orS2rel = FLLFRLLRLLR, which are shown in Fig-ures 2(b) and 2(c) respectively.
(a) (b) (c)Figure 2: In (b) a one point mutation of the structurein (a) at the sixth gene. An `R' was mutated to an `F'producing a lever e�ect of 90 degrees counterclockwise. In(c) an `R' was mutated to an `L' producing a lever e�ectof 180 degrees counterclockwiseWe can see from this example that a one point mu-tation in the relative encoding produces a rotation ef-fect in the structure at the mutated point. To pro-duce the same e�ect in the absolute encoding we mustperform a macromutation, that is, several genes needto be simultaneously mutated to produce the samechange in the structure. We de�ne a rotation oper-ator in the absolute encoding as, given a point whereto produce the rotation, all the remaining genes will

be changed according to a mapping that depends onthe angle to be rotated1. In the working example,Figure 2(a) is encoded as Sabs = RULLURURULUwhile the �rst mutated structure (Figure 2(b)) isS1abs = RULLUULULDL and Figure 2(c) is S2abs =RULLULDLDRD.Mutation on the Absolute Encoding A One-point mutation in an absolute encoding leaves the ori-entation of the rest of the structure unchanged. Toachieve the same e�ect in the relative encoding, it isnecessary to change two subsequent values in the en-coding. There are, however, restrictions in the map-ping from a one-point mutation under the absoluteencoding to a two-point mutation in the relative en-coding. Speci�cally, point mutations in an absoluteencoding can produce structures that are not one-stepself-avoiding, which have no equivalent in a relativeencoding.4.2 POTENTIAL ENERGYFORMULATIONFigure 3 illustrates two conformations of a hydropho-bic sequence that are formed from two domains con-nected by a hydrophilic chain. Since the HP modelonly rewards direct hydrophobic-hydrophobic con-tacts, only the compact subconformations contributeenergy to these conformations. However, it is clearthat Figure 3a is closer to forming the optimal confor-mation than Figure 3b.
(a) (b)Figure 3: Two conformations with equal energy for theHP model. Figure (a) has lower energy for the modi�edHP model.This type of disparity between the energy value andthe \closeness" of the conformation can be remediedby augmenting the energy function to allow a distance-dependent hydrophobic-hydrophobic potential. Sincethe distances between amino acids form a countableset, it is possible to construct a distance-dependentpotential that preserves the rank order of the confor-mations in the HP model while enabling a �ner levelof distinction between conformations with the samenumber of hydrophobic-hydrophobic contacts. For ex-ample, if dij is the distance between two hydrophobic1I.e. to rotate 90 degrees clockwise U 7! R;D 7!L;R 7! D;L 7! U
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amino acids Hi and Hj , then we can useÊHiHj (dij) = � �1 ; dij = 1�1=(dkijNH) ; dij > 1 ; (1)where NH equals the number of hydrophobics in thepolymer sequence, and where k = 4 for the squarelattice and k = 5 for the triangular and cubic lattices.4.3 CONSTRAINT MANAGEMENTTwo broad classes of constraints need to be enforcedto de�ne a feasible conformation: (1) the connectiv-ity of the polymer chain and (2) the self-avoidance ofthe conformation. Perhaps the strongest motivationfor using internal coordinates is that they handle the�rst constraint implicitly, whereas this must be doneexplicitly if Cartesian coordinates are used.Two basic approaches have been taken to manageself-avoiding constraints when internal coordinates areused. First, the search is constrained to only considerfeasible, self-avoiding conformations. This method isnot well suited to PSP problems, though, because theshortest path from one compact feasible conformationto another may be very long when compared with theshortest path through the space of infeasible confor-mations. For example, in Figure 4 the HP sequencecan move from conformation (a) to conformation (b)through three single-point changes. These changesgenerate infeasible conformations, but the sequence offeasible conformations which perform this move wouldclearly be much larger than this.The second approach to enforcing constraints usespenalties to guide the GA toward feasible solutions.Two penalty methods have been used to solve PSP forthe HP model. First, a penalty is added for every pairof amino acids that lie at the same lattice point. Usingthis method, there may be O(n2) penalties. Second, apenalty is added for every lattice point at which thereare two or more amino acids. Using this, there may beO(n) penalties. Patton et al. [10] extend this furtherto prevent hydrophobic amino acids from contributingto the objective function if they lie on a lattice pointwith other amino acids.
(a) (b)Figure 4: Two compact conformations which are\close" if infeasible moves are allowed.

When evaluating these penalty methods, it is impor-tant to consider whether they correctly bias the searchstrategy to feasible regions. The GAs discussed in Sec-tion 3 that use a penalty method apply a �xed constantpenalty term C per violation. This policy can causeproblems if the second penalty method is applied with-out the extension of Patton et al. . For �xed values ofC is possible to construct examples where the structurewith optimal energy with the penalty method does notcorrespond to the optimal energy for the HP model. Itis also important to consider the e�cacy of the penaltymethod to understand how well they facilitate opti-mization. For example, we believe that the extendedformulation proposed by Patton et al. may lead to aless e�ective search than other methods. When the hy-drophobic amino acids are prevented from contribut-ing to the objective function because they overlap, the�tness landscape may have large 
at regions, whichcan make the optimization problem more di�cult.These considerations recommend the use of a �xedpenalty approach that is adapted based on the num-ber of hydrophobics available in the protein sequence,NH . The idea is that we can select C su�cientlylarge to ensure the validity of the �xed-penalty con-straint formulation. For example, on the square lat-tice if C = 2NH + 2 then the penalty is large enoughthat any infeasible conformation has positive energywhile all feasible conformations have nonpositive en-ergy. Thus the optimal conformation of the HP modelis strictly better than the best penalized conformation.5 METHODS AND RESULTSThe GAs used in our experiments had a (500 + 500)selection strategy, and mutation was applied to eachstructure with probability 0.3. One-Point mutationwas used to change one value in an absolute encod-ing, and two-point mutation was used to change twoconsecutive values in a relative encoding. One-Point,Two-Point and Uniform crossover operators were usedwith probability of 0.8. Each run of the GA consistedof 200 generations. For the comparison of the en-codings the proposed modi�ed energy potential wasused. Furthermore, every pair of amino acids mappedto the same lattice position was penalized with a con-stant penalty, C, dependent on the length of the in-stance. We used �ve polymer sequences in our experi-ments, which have a relatively short length (less than50 monomers). The instances used can be found atttp://www.ics.uwe.ac.uk/staff/Natk.tml.RELATIVE VS. ABSOLUTE ENCODING Inorder to evaluate the e�ect of the encoding on the
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ability of the GA to �nd low energy con�gurations,a series of experiments were run using the GA to �ndoptimal con�gurations for a number of proteins underthe two encodings. The performance metric was the�tness of the best individual in the �nal generationof each run. In order to distinguish the e�ects of theencodings from that of the choice of lattice or opera-tors, experiments were run in three di�erent embed-ding spaces: two dimensional square and triangularlattices and a three dimensional square lattice. Fiveprotein instances of di�ering length and di�culty werechosen for each lattice. In each type of lattice separateexperiments were run using One-Point, Two-point andUniform Crossover. As described above the mutationoperators used have the same phenotypic e�ect in eachencoding. Twenty nine runs were done for each of the45 combinations.Figure 5 summarizes the result of this experiment. Foreach combination of lattice, crossover operator, andprotein sequence, we computed the rank over all trialsof the two experiments that use either an absolute orrelative encoding of protein conformations. A maxi-mum rank of 58 is possible since there are 29 trialsin each of the experiments in each pair. This �gureshows boxplots of the relative ranks of the �nal resultsfor each lattice and for the encodings; maximizing theranks indicates a better method. This plot clearly in-dicates that the relative encoding is at least as good inall lattices, and for the square lattice it is much better.
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Figure 5: Distribution of relative ranks for relative andabsolute encodings on the square, cubic and triangular lat-tices.In Table 5 the results of computing the p � valuesof a t � test are shown, the null hypothesis used wasthat the mean �tness of both encodings are the same.From this table we can say that: (1) the relative wasalmost always better than the absolute encoding forthe square and cubic lattices ( at the 95% con�dencelevel ) and (2) the robustness of the relative encodingdegrades when we look to the triangular lattice (wesuspect this might have important consequences in o�-lattice modeling).

Lat Cro A B C D ES2D 1-p R+ R+ R+ R+ R+2-p R+ R+ R+ R+ R+Uni R+ R+ R+ R+ R+S3D 1-p R+ R - R+ R+2-p R R+ R+ R+ R+Uni R+ R+ R+ R R+T2D 1-p - R A+ A A+2-p - - - - A+Uni R+ R + R+ A+ A+Table 1: Summary of t-test analysis: - denotes no signi�-cant di�erence, X denotes Encoding X was better with 90%con�dence, X+ denotes 95% con�dence, X= R (relative)or A (absolute)STANDARD VS. DISTANCE ENERGY Inthis set of experiments we wanted to elucidate if themodi�ed energy potential improves the search capabil-ities of the GA. For each of the three lattices we usedthe same �rst four instances as for the previous section.From the three crossover available we run the simula-tions for One-point and Two-point crossover. Again,29 trials were assigned to each of the four instancesin each of the three lattices for each crossover tested.The results of these experiments do not show a sub-stantial impact of using the modi�ed energy potentialfor the test problems. We computed the p� values ofa t � test where the null hypothesis was that the �-nal protein con�guration were the same using the twoenergy potential. We found that the two energy poten-tials had the same performance except for instance Busing two-point crossover on the triangular lattice (p= 0.95). There also appeared to be a slight e�ect forinstances C and D on the triangular and cubic lattices,but this was not a signi�cant di�erence.6 DISCUSSIONIn this paper we have directly compared the encodingof PSP using internal coordinates by means of relativeand absolute moves. We have shown the search spacesinduced by the relative and absolute encodings to bedi�erent and described a mapping of the One-pointmutation in the absolute to the relative encoding (thesame can be done for other genetic operators). Also,we proposed a modi�ed energy potential that facil-itates the GA search while preserving the ranking ofthe standard HP model. We also identi�ed weaknessesin the standard constraint management strategies andproposed a constraint method that ensures the feasi-bility of the optimal solution. These algorithmic issueswere explored in the three most common lattices be-ing used: two and three dimensional square lattice and
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two dimensional triangular lattices. Our results sup-port the use of the relative encoding for this problem,which may explain the superior performance of the GAdescribed by Patton et al. [10] as compared to the GAdescribed by Unger.It was previously argued [11, 7, 8] that the representa-tion with internal coordinates and standard crossoversfail to transfer building blocks. In the works stud-ied there were no direct comparisons of the relativeand absolute encodings. If alternative representationsbased on internal coordinates are to be researched orused in heuristics (i.e. G.R.A.S.P., Hill Climbers, etc.),then our results supports the use of the relative en-coding over the absolute one. Although the modi�edenergy potential did not provide improved optimiza-tion performance in our experiments, we suspect thatfor longer proteins the di�erence between the two for-mulations will be more clear. Furthermore, we believethat a modi�ed energy formulation will be particularlyimportant for the e�ective use of hybrid GAs that usea local search method. Without a modi�ed energy po-tential, there will exist large \plateaus" in the energylandscape on which local search cannot �nd a descentdirection and where it must e�ectively perform a ran-dom search.AcknowledgementsN. Krasnogor and D. Pelta are also at LIFIA, Uni-versidad Nacional de La Plata, Facultad de CienciasExactas, Departamento de Informatica. David Peltais supported by the COMETAS project of the ALFAprogram of the European Commision-DG-I. This workwas supported in part by Sandia National Labora-tories, a multiprogram laboratory operate by San-dia corporation, a Lockheed Martin Company, for theUnited States Department of Energy under ContractDE-AC04-94AL85000.References[1] B. Berger and T. Leight. Protein folding inthe hydrophobic-hydrophilic (HP) model is NP-complete. J. Comp. Bio., 5(1):27{40, 1998.[2] L. T. Biegler, T. F. Coleman, A. R. Conn, andF. N. Santosa, editors. Large-Scale Optimiza-tion with Applications. Part III: Molecular Struc-ture and Optimization, volume 94 of The IMAVolumes in Mathematics and its Applications.Springer-Verlag, New York, 1997.[3] P. Crescenzi, D. Goldman, C. Papadimitriou,A. Piccolboni, and M. Yannakakis. On the
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